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Summary: The trans-2,8-disubstituted oxocane (2) was synthesized and shown not to be the natural product gloeosporone. 

A metabolite which inhibits seed germination was isolated from the spores of the fungus Colletotrichum gloeosporioides and 

given the trivial name gloeosporone’ . Meyer and co-workers2 assigned the structure (1)3 on the basis of IR, ’ H- and 13C.NMR 

and MS data. However, recent synthetic studies 4f5 have shown that the putative structure (1) is incorrect. A revised structure 

derived from detailed analysis of the 500 MHz ‘H NMR data and a single crystal x-ray analysis has revealed that gloeosporone is 

the 14-ring oxygen-bridged macrolide (3$. We now describe our attempts to synthesise pseudo-gloeosporone (1) and show that it 

exists preferentially as the open-chain tautomer (2). Key steps in our approach were the use of an intramolecular Mukaiyama 

directed aldol condensation7 to construct the oxocane ring and the photo-oxidation of the silylfuran (13) to give the y-keto-acid 

(15). 

(1) (21 (3) 

In our synthesis of pseudo-gloeosporone outlined in the Scheme we used the 8-endo,endo, cyclisation8 of the enol silane (4) 

to give the oxocan-4-one (5). Although the yield of the cyclisation was modest, the product was obtained as a single 

diastereoisomer and was easily separated from the highly polar by-products by column chromatography. The preferential formation 

of the g-membered ring instead of the alternative lo-membered ring is noteworthy. 
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Competing elimination of the ring oxygen foiled several standard methods for the reduction of ketone group in (5) to the 

corresponding alkane (10). Despite its length, the 5-step procedure used was reasonably efficient and gave (10) in 70% overall yield 

from (5). 

Synthesis of the aldehyde (II)10 and its subsequent elaboration to the y-keto acid of pseudo-gloeosporone was likewise 

complicated by competing elimination of the ring oxygen. In the Swem oxidation9 of (10) this problem was minimised by using 

N-methylmorpholine as the base instead of the usual methylamine. 

The trimethylsilyl furan (12) was readily prepared from aldehyde (11) and provided a particularly mild and convenient Trojan 

horse for the introduction of the y-keto acid moiety after more direct and brutal methods failed. Photo-oxidation of the furan (13) 

gave the 5-hydroxybutenolide (14) which existed predominantly as the ring tautomer (IR: 3180 and 1760 cm-’ ; 13C=0 at 

6 170.76). However, on reduction of the double bond the y-keto acid (15) was obtained predominantly as the open chain tautomer. 

The diphenylmethyl ester (16)l 1 ofpseudo-gloeosporone was obtained as a single diastereoisomer by a 3-step sequence from 

(15). The structure (16) was corroborated by the three carbonyl peaks in the IR (1745,172s. and 1720 cm-‘)and the three carbonyl 

peaks in the 13C-NMR spectrum (6 198.23, 197.76, and 171.36). Hydrogenolysis of the diphenylmethyl ester under standard 

conditions gave pseudo-gloeosporone 12 as a yellow-green oil. The IR spectrum revealed typical carboxylic acid absorptions at 

3600-2500 and 1720 cm-l and two much weaker peaks at 1790 and 1760 cm-l. The 13C NMR spectrum showed a broadened 

signal at 6 176.77 due to the carboxylic acid and the two carbonyls of the a-diketone had coalesced to give a single weak and 

broadened peak at 6 198.72. The remaining fifteen signals were sharp. Similarly, some of the signals of the 360 MHz 1 H NMR 

spectrum were broadened. These data suggest that pseudo-gloeosporone undergoes ring-chain tautomerism and that the chain 

tautomer predominates. Proof that nothing untoward occurred during the final hydrogenolysis step was obtained by converting (2) 

back to the diphenylmethyl ester on treatment with diphenyldiazomethane. 

The work reported herein provides a useful illustration of the potential of intramolecular directed aldol reactions for the 

construction of 8-membered rings13 and makes a tardy contribution to the final structure elucidation of gloeosporone. 
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Reagents undcorufirionr: (a) Tic14 / CH$lz, -78”C, 5 min; (b)TBDMSCl, imidazole / DMF, r.t.; (c) N&H4 / MeOH, 0°C. 40 min; (d) 

MsCl / CH2Cl2, -2O’C. 5 min followed by LiiHEt 3 / THF. reflux 3 h, (e) Bu4NF/ THF, r.t.: (f) Swan oxidation; (g) 5.lithio-2- 

trimethylsilylfuran / THF. -78°C. 25 min; (h) 02, methylene blue, hv / MeOH. -40°C. 10 min; (1) H2. 5% Rb/A1203 in EtOAc. IL; (i) 

Ph2CN2/ benzene, reflux; (k) H2, 5% Pd/C in EtOAc. 

Scheme 

TBDMS = t-BuMe2 Si ; TMS = Meg Si 
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